SCHOOL OF CIVIL ENGINEERING
AND ENVIRONMENTAL SCIENCE

Randall Kolar, Director
Carson Engineering Center, Room 334
202 W. Boyd St.
Norman, OK 73019-1004
Phone: (405) 325-5911
cees@ou.edu
www.ou.edu/coe/cees/

General Information
Vision
Through a community of scholars committed to excellence in research and teaching, the mission of CEES is to provide our students with the technical education and critical thinking skills needed to lead the country in addressing the complex infrastructure and environmental problems facing today's society.

Careers in Architectural Engineering
Architectural engineers design buildings and other structures and understand the design of a building involves more than its appearance. Buildings also must be functional, safe and economical and meet the needs of the people who use them. Architectural engineers design a variety of structures, including office and apartment buildings, schools, churches, factories, hospitals, houses and airport terminals. They also design such complexes as urban centers, college campuses, industrial parks and communities. In addition, they may advise on the selection of building sites, prepare cost analysis and land-use studies and do long-range planning for land development.

Careers in Civil Engineering
Civil engineering is the oldest of the modern engineering disciplines with historical roots dating back to the 1700s. Responsibilities of the first civil engineers increased during the industrial revolution and included the construction of canals, roads and railroads.

Civil engineers are responsible for the design and construction of society's infrastructure, such as buildings, highways, bridges, mass transit systems, dams and locks, and municipal water and sewage treatment systems. They often are responsible for planning, managing, operating and maintaining these facilities. Consequently, civil engineering is frequently referred to as the "people-serving profession."

Spurred by general population growth and an expanding economy, more civil engineers will be needed to design and construct higher-capacity transportation, water supply and pollution control systems as well as large buildings and building complexes. They also will be needed to repair or replace existing roads, bridges and other public structures.

Careers in Environmental Engineering
Using the principles of physics, biology and chemistry, environmental engineers develop methods to meet such environmental challenges as water and air pollution control, recycling, waste disposal, hydrology, river management and control, and public health issues. Environmental engineers conduct hazardous waste management studies in which they evaluate the significance of the hazard, offer analysis on treatment and containment and develop regulations to prevent mishaps. They also design municipal sewage and industrial wastewater systems, analyze scientific data, conduct research projects and perform quality control checks.

Past environmental engineering graduates have been employed by state and federal environmental agencies, including the Oklahoma Department of Environmental Quality, the U.S. Environmental Protection Agency and the U.S. Geological Survey as well as various private industries and consulting firms.

Careers in Environmental Science
Environmental scientists have a variety of job responsibilities, including collecting and analyzing air, water and soil samples, monitoring compliance with environmental laws and regulations, assisting industrial companies in complying with environmental regulations, and addressing public meetings on local environmental challenges.

Past environmental science graduates have been employed by the U.S. Environmental Protection Agency, Oklahoma Department of Environmental Quality, Oklahoma Department of Health and numerous private industrial and consulting firms.

Programs & Facilities
CEES is currently housed in the Carson Engineering Center, the Engineering Laboratory Building and Sarkey’s Energy Center on the main campus as well as in the Donald G. Fears Structural Engineering Laboratory and the National Weather Center on the south research campus.

Student Team Room and Computing Laboratory
The student team room and computing laboratory is located in Carson Engineering Center and is available to all CEES students.

Teaching and Research Laboratories
CEES has laboratory facilities for teaching and research in environmental science and engineering, geotechnical engineering and structural engineering.

- The traditional wet laboratories in the Carson Engineering Center are associated with teaching and research efforts in environmental science and environmental engineering.
- The materials and soils laboratory is located in Carson Engineering Center and is used for teaching and research in soils and materials science.
- The Donald G. Fears Structural Engineering laboratory is devoted to teaching and research programs in geotechnical and structural engineering.
- The Ray Broce Materials laboratory is devoted to teaching and research in asphalt and other transportation materials.
- The Transportation, Risk, and Information Commons (TRICS) laboratory focuses on how transportation systems depend on social and other physical systems in the context of natural and man-made hazards.

Undergraduate
Civil Engineering and Environmental Science Program
Educational Objectives
Program educational objectives (PEOs) are broad statements that describe what graduates are expected to attain within a few years of graduation. The PEOs were developed to meet the needs of the constituencies of CEES. The primary constituents of CEES programs are our alumni and the industries and governmental agencies that employ
our alumni. The PEO’s are focused on providing well trained engineers for employers and to empower those engineers to advance during their careers. The PEOs for CEES engineering graduates are:

Program Educational Objective 1
CEES alumni will embark on successful careers in areas associated with the development, implementation, and management of architectural, civil, and environmental engineering systems, or will continue their education through graduate or professional school.

Program Educational Objective 2
CEES alumni will advance in their careers by employing the latest technical knowledge, creativity, inclusive teamwork, and ethical decision making to find sustainable solutions for pressing environmental and infrastructure problems; they will continue their professional development through lifelong learning; and they will support the profession and the University.

Civil Engineering and Environmental Science Undergraduate Student Outcomes
Student Outcomes describe what students are expected to know and be able to do by the time of graduation. The Student Outcomes for engineering students in CEES are:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Bachelor of Science
Students enrolled in the Bachelor of Science in Architectural Engineering program take the same core engineering, mathematics, science and English courses taken by other engineering students. They also take a series of architectural planning and methods courses from the College of Architecture.

The Bachelor of Science in Civil Engineering curriculum is comprised of four areas of emphasis; environmental, geotechnical, structural, and transportation engineering. The undergraduate civil engineering student must complete a sequence of core engineering courses plus one or two courses in each of these areas. Students then choose three upper division Professional Electives in their preferred area of emphasis.

The core curriculum for the Bachelor of Science in Environmental Engineering is similar to civil engineering; however, the last two years of the program focus strictly on environmental courses. Students are required to take courses in air pollution control engineering; water and wastewater engineering, and solid and hazardous waste management.

Students pursuing the Bachelor of Science in Environmental Science complete fundamental courses in chemistry, math, physics, biology, microbiology, and environmental science. Students then choose three upper division track electives electives in one of four areas: chemistry, biology, math, or physical sciences. Students also choose two upper division Professional Electives in the preferred area of emphasis within environmental science. This flexible program prepares students for careers in government, consulting, and industry.

Minor
Students earning a bachelor’s of science degree in specific areas are eligible to apply for the Environmental Science Engineering Minor. Additional majors will be considered on a case-by-case basis.

The Water and Sanitation for Health and Sustainable Development Minor is designed for engineering and non-engineering majors who have an interest in development work in emerging regions, particularly the sectors of water, sanitation, and health.

Accelerated Bachelor of Science/Master of Science
The combined BS/MS program is offered to qualified undergraduate students in the School of Civil Engineering and Environmental Science, University of Oklahoma, who wish to pursue their graduate education while completing their undergraduate degree requirements. The Bachelor of Science portion is accredited by the Engineering Accreditation Commission of ABET.

• Architectural Engineering, Bachelor of Science/Civil Engineering, Master of Science
• Civil Engineering, Bachelor of Science/Master of Science
• Environmental Engineering, Bachelor of Science/Master of Science
• Environmental Science, Bachelor of Science/Master of Science

Graduate
Master of Science Civil Engineering
The Civil Engineering Master of Science program is open to students with undergraduate degrees in environmental or civil engineering or related engineering or science disciplines who have completed certain minimum undergraduate coursework.

• Civil Engineering: Geotechnical Engineering, Master of Science
• Civil Engineering: Geotechnical Engineering (Online), Master of Science
• Civil Engineering: Structural Engineering, Master of Science
• Civil Engineering: Structural Engineering (Online), Master of Science
• Civil Engineering: Transportation Engineering (Online), Master of Science
• Civil Engineering: Water Resources Engineering, Master of Science
• Civil Engineering: Water Resources Engineering (Online), Master of Science

Master of Science in Environmental Engineering
The Master of Science in Environmental Engineering program is open to students with undergraduate degrees in environmental or civil engineering or related engineering or science disciplines who have completed certain minimum undergraduate coursework.

• Environmental Engineering Master of Science

Master of Environmental Science
The Master of Environmental Science programs are open to students with undergraduate degrees in the physical, natural, or life sciences or related disciplines who have completed certain minimum undergraduate coursework.

• Environmental Science
• Environmental Science: Hydrology and Water Security Online

Doctoral Programs
The School of Civil Engineering and Environmental Science offers doctoral programs in environmental science, environmental engineering, and civil engineering. A master's degree in a related discipline is typically required for admission to all CEES Ph.D. degree programs, although students who have outstanding academic credentials and a documented record of research experience at the undergraduate level may occasionally be admitted to the doctoral program without a master's degree.

Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEES 1000</td>
<td>CEES Seminar</td>
<td>0</td>
</tr>
<tr>
<td>CEES 1111</td>
<td>Exploring CEES</td>
<td>1</td>
</tr>
<tr>
<td>CEES 1112</td>
<td>Introduction to Civil Engineering and Environmental Science</td>
<td>2</td>
</tr>
<tr>
<td>CEES 2113</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>CEES 2153</td>
<td>Mechanics of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CEES 2213</td>
<td>CADD Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CEES 2223</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>CEES 2313</td>
<td>Water Quality Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CEES 2970</td>
<td>Special Topics/ Seminar</td>
<td>1-3</td>
</tr>
<tr>
<td>CEES 3213</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
</tbody>
</table>

CEES 1111 Exploring CEES
Prerequisite: Majors only. Introduction to fundamental concepts (principles of mechanics, energy balances, simple circuits), problem solving and design, simple computing software, and disciplinary topics for architectural, civil or environmental engineers and environmental scientists. (Sp)

CEES 1112 Introduction to Civil Engineering and Environmental Science
Prerequisite: Freshman only. Introduction to fundamental concepts (mass/flow balance), problem solving and design, and simple computing software for architectural, civil or environmental engineers and environmental scientists. (F)

CEES 2113 Statics
Prerequisite: PHYS 2514 and MATH 2433 or MATH 2934 or concurrent enrollment in MATH 2433 or MATH 2934. Vector representation of forces and moments; general three-dimensional theorems of statics; centroids and moments of area and inertia. Free-body diagrams, equilibrium of a particle and of rigid bodies, distributed loads, friction and internal shear and moment loads. Analysis of trusses, frames, and machines. (F)

CEES 2153 Mechanics of Materials
Prerequisites: 2113 or AME 2113 or PE 2113. Basic principles of mechanics, including the definition of stress and strain, transformations and principal values for the stress and strain tensors, kinematic relations, review of conservation equations and the development and application of constitutive laws for idealized materials. Elementary elastostatics utilizing Hooke's law; constitutive relations for a linear-elastic continuum, including elastic parameters such as Young's modulus, shear and bulk moduli and Poisson's ratio. Solution of elementary one- and two-dimensional mechanics problems, including thermal stresses and strains, beam flexure, shear and deflections, pressure vessels and buckling of columns. (Sp)

CEES 2213 CADD Fundamentals
Prerequisite: CEES Majors only and Sophomore standing. Introduction to computer aided design and drafting with a focus on the AutoCAD and MicroStation platforms. This course is primarily about learning to use the software and learning how to convey an engineering design graphically. (F)

CEES 2223 Fluid Mechanics
Prerequisites: 2113 or AME 2113 or PE 2113, and Math 3113 or concurrent enrollment. Coverage of the fundamentals of fluid statics and dynamics. Formulation of the equation of fluid flow, i.e., Navier-Stokes equation, Euler equations, Bernoulli equations, etc. and their application. Examples of ideal fluid flow, such as flow in open and closed conduits. (Sp)

CEES 2313 Water Quality Fundamentals
Prerequisite: CHEM 1415, MATH 2423 or MATH 2924. Introduction to environmental mass balance and fate processes. Studies of mass and energy transfer, introductory environmental chemistry, water quality parameters, mathematics of growth, statistics and data analysis, introduction to environmental laws and regulations. (F)

CEES 2323 Environmental Transport and Fate Process
Prerequisite: 2313. Physicochemical and biological processes controlling contaminant distribution and fate; hydrological processes controlling contaminant transport; sources, prevention and remediation of environmental pollutants. (Sp)

CEES 2970 Special Topics/ Seminar
Special Topics. 1 to 3 hours. May be repeated; Maximum credit nine hours. Special topics course for content not currently offered in regularly scheduled courses. May include library and/or laboratory research, and field projects. (Irreg.)

CEES 3213 Water Resources Engineering
Prerequisite: 2223 or permission of instructor. Municipal water demands, surface water hydrology, ground water hydrology, water distribution systems, pump design, wastewater collection systems, storm water management, water law. (F)
CEES 3243 Water and Wastewater Treatment Design 3 Credit Hours
Prerequisite: CEES 2223. Design of municipal water and wastewater treatment plants. Emphasis is placed on the characterization of water and wastewater and physical, chemical and biological treatment methods. Sludge processing advanced treatment methods and treatment plant hydraulics are also considered. (Sp)

CEES 3251 WaTER Center Integrated Seminar 1 Credit Hour
Prerequisite: permission of instructor. This course is a weekly hour-long seminar in which students will hear from guest speakers discussing WASH projects in emerging regions, present their intercultural experience in the form of a case study, and listen to other case study presentations. Students may also read and discuss assigned readings (e.g., published peer-reviewed papers of other researchers doing similar work). (FSP)

CEES 3263 Introduction to Dynamics for Architectural and Civil Engineers 3 Credit Hours
Prerequisite: CEES 2153 and MATH 3113. Kinematics and kinetics of rigid bodies; free and forced vibrations of undamped and damped single degree-of-freedom systems; concept of mass, stiffness, and damping for typical structures; introduction to vibrations of two and more degrees-of-freedom systems; and determination of loads on structures from dynamic events such as earthquakes. (F)

CEES 3361 Soil Mechanics Laboratory 1 Credit Hour
Prerequisite: CEES 2153 or PE 2153; CEES 3363 or concurrent enrollment (you must be enrolled in both lecture and lab section together the first time you attempt either). This is one of two complimentary courses taken in the area of Geotechnical Engineering and serves as an introduction to soil mechanics. During this course, the student will conduct simple laboratory tests to identify and classify soils, characterize the compacted properties of soil, and quantify soil permeability, compressibility and strength. (F)

CEES 3363 Soil Mechanics 3 Credit Hours
Prerequisite: CEES 2153 or PE 2153; CEES 3361 or concurrent enrollment (you must be enrolled in both lecture and lab section together the first time you attempt either). General treatment of the physical and mechanical properties of soils. Topics include soil composition, classification, phase relationships, compaction, effective stress, consolidation, shear strength and permeability and seepage. (F)

CEES 3403 Materials 3 Credit Hours
Prerequisite: CEES 2153 or PE 2153 or concurrent enrollment. Study of the properties of materials utilized by architectural and civil engineers; analyses of aggregates, concrete, masonry, steel, asphalt, plastics and wood. Laboratory. (Sp)

CEES 3413 Structural Analysis I 3 Credit Hours
Prerequisite: CEES 2153 or PE 2153. Loads, reactions and force systems; introduction to design codes; analysis of frames and trusses; calculation of structural deformations; and analysis of indeterminate structures. Emphasis on classical solutions and time-tested approaches to structural engineering. Introduction to structural analysis computer programs to solve complex problems. (F)

CEES 3422 Intercultural Immersion Experience in an Emerging Region 2 Credit Hours
Prerequisite: permission of instructor. This course is intended to be a 3-6 week summer international immersion experience with a WaTER component (technological, cultural, business lens on water, sanitation, hygiene in a particular context). Students design their own experience/internship, write a proposal of planned activities, and secure CEES faculty advisor approval. After completion, students submit a written report and oral presentation to a review committee. (Su)

CEES 3440 Mentored Research Experience 3 Credit Hours
0 to 3 hours. Prerequisites: ENGL 1113 or equivalent, and permission of instructor. May be repeated; maximum credit 12 hours. For the inquisitive student to apply the scholarly processes of the discipline to a research or creative project under the mentorship of a faculty member. Student and instructor should complete an Undergraduate Research & Creative Projects (URCP) Mentoring Agreement and file it with the URCP office. Not for honors credit. (F, Sp, Su)

CEES 3453 Introduction to Construction Management 3 Credit Hours
Prerequisite: CEES 2213 and junior level standing in CEES. Introduction to methods for managing construction projects including scheduling, cost estimating, contracts, pay request, change orders, and requests for information. Students will also learn how to read construction documents and understand project specifications. (Sp)

CEES 3663 Structural Design - Steel I 3 Credit Hours
Prerequisite: CEES 3413 and CEES 3403 or concurrent enrollment in CEES 3403. Design of steel structural members including tension elements, columns, beams, and beam-columns; bolted and welded connection design; composite beam design; introduction to plastic design. Laboratory. (Sp)

CEES 3673 Structural Design - Concrete I 3 Credit Hours
Prerequisite: CEES 3403, CEES 3413. Analysis and design of reinforced concrete beams, columns, slabs, footings, etc., along with discussion of current building practice. Laboratory (F or Sp)

CEES 3883 Transportation Engineering 3 Credit Hours
Prerequisite: CEES 2153 or PE 2153 and CEES 3403 or concurrent enrollment. Introduction to transportation planning, design, construction, operations and maintenance emphasizing the highway/street mode. Includes demand modeling, route location and design, pavements including hot mix asphalt volumetrics and stability, drainage, and traffic control devices. (Sp)

CEES 3960 Honors Reading 1-3 Credit Hours
1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated; maximum credit six hours. Consists of topics designated by the instructor in keeping with the student’s major program. The topics will cover materials not usually presented in the regular courses. (F, Sp, Su)

CEES 3970 Honors Seminar 1-3 Credit Hours
1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated; maximum credit six hours. The projects covered will vary. Deals with concepts not usually presented in regular coursework. (Irreg.)

CEES 3980 Honors Research 1-3 Credit Hours
1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated; maximum credit six hours. Provides an opportunity for the gifted Honors candidate to work on a special project in the field. (Sp)

CEES 3990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: permission of instructor and junior standing. May be repeated once with change of content. Independent study may be arranged to study a subject not available through regular course offerings. (F, Sp, Su)

CEES 4113 Building Lighting and Electrical Systems 3 Credit Hours
Prerequisite: MATH 2423 or MATH 2924; PHYS 2524; and ENGR 2431 or concurrent enrollment, CEES majors only. Fundamentals of building lighting and electrical systems. Lighting topics include the determination of appropriate lighting quantity and quality, luminaires and lighting design procedures for residential, commercial and industrial buildings. Electrical topics will include service voltages, overcurrent protection, short circuit analysis and branch circuit design for residential, commercial and industrial buildings. (F or Sp)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEES 4114</td>
<td>Aquatic Chemistry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with CEES 5114) Prerequisite: CHEM 1415 and CEES 2323 or permission of instructor. Environmental kinetics and thermodynamics in aquatic systems; acid/base, precipitation/solubility, metal complexation and oxidation/reduction reactions; environmental colloidal and solid-liquid interface chemistry. No student may earn credit for both 4114 and 5114 or Environmental Science 4114 and 5114. Laboratory. No student may earn credit for both 4114 and 5114. (F)</td>
<td></td>
</tr>
<tr>
<td>CEES G4123</td>
<td>Open Channel Flow</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CEES 2223. Theory, analysis and design of channels, aqueducts, headworks, siphons, spillways and hydraulic structures. An in-depth study of critical flow and measurement techniques. Backwater analysis by analytical, calculator and computer methods. Special emphasis on practical problems of general interest. (F)</td>
<td></td>
</tr>
<tr>
<td>CEES G4243</td>
<td>Water Technologies for Emerging Regions</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CEES 2223. Students will gain an understanding of water and sanitation issues in remote villages of developing countries. Explore and design sustainable technologies appropriate to these settings including cultural, political and economic factors. (Sp)</td>
<td></td>
</tr>
<tr>
<td>CEES G4253</td>
<td>Statistics and Probability</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: MATH 2423 or 2324 and PHYS 2524 or 2424. Designed to help students understand the fundamentals of probability, statistics, reliability, and risk methods in support of decision making for future engineers and scientists. Fundamental concepts in probability and statistics will be reviewed and used. Engineering decisions are often based on data that contain uncertainty; future scientists and engineers should understand how uncertainty affects calculated quantities, accuracy, precision, and reliability. (Sp)</td>
<td></td>
</tr>
<tr>
<td>CEES G4263</td>
<td>Hazardous and Solid Waste Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: junior or above status in CEES or permission of instructor. Sources and types of solid wastes; identification and classification of hazardous wastes; waste handling, transportation, treatment and disposal techniques, federal and state legislation; and environmental and health effects. (F)</td>
<td></td>
</tr>
<tr>
<td>CEES G4273</td>
<td>WaTER Technical Field Methods</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: permission of instructor. A hands-on practicum for construction and implementation of water and sanitation projects in developing countries. Course modules reflect the typical projects and skills needed by development workers in organizations such as Peace Corps, USAID, Engineers Without Borders, and faith-based organizations. Emphasis will be on sustainable technologies using methods and materials appropriate to emerging regions. Non-engineering students are encouraged to participate. (Su)</td>
<td></td>
</tr>
<tr>
<td>CEES 4281</td>
<td>Engineering Co-Op Program</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Crosslisted with AME, CH E, C S, ECE, EPHY, ISE and BME 4281) Prerequisite: Departmental permission and junior standing. May be repeated; maximum credit 6 hours. The Co-op program provides students an opportunity to enhance their education via career exploration in related professional work experiences. Course assignments help students articulate their experiences by completing journals; mid-term paper; final paper and/or final presentation. Faculty receive an evaluation from the student's Co-op supervisor who monitors performance. Faculty collaborate with the Co-op supervisor to ensure student success. (F, Sp, Su)</td>
<td></td>
</tr>
<tr>
<td>CEES 4324</td>
<td>Environmental Biology and Ecology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with CEES 5324) Prerequisite: CEES 2323. Examines applied environmental biology; biological consequences of environmental impacts; mitigation of environmental impacts via biogeochemical, ecological and microbial processes. No student may earn credit for both 4324 and 5324. Laboratory (F)</td>
<td></td>
</tr>
<tr>
<td>CEES G4333</td>
<td>Foundation Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CEES 3363. Substructure analysis and design to meet various soil conditions; footings and rafts, shoring and underpinning, piles, cofferdams, caissons, breakwaters, piers, wharves, vibratory effects on foundations. (Sp)</td>
<td></td>
</tr>
<tr>
<td>CEES 4363</td>
<td>Ecological Engineering Science</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with 5363) Prerequisite: Senior standing or permission of instructor. Exploration of the design of sustainable ecosystems integrating human society with its natural environment for the benefit of both. Uses a systems perspective that resilient and sustainable solutions involve working with natural ecological and biogeochemical processes and not against them, and require less fossil fuel input, produce less pollution, and represent cost-effective alternatives to traditional energy- and resource-intensive technologies. No student may earn credit for both 4363 and 5363. (Sp)</td>
<td></td>
</tr>
<tr>
<td>CEES G4373</td>
<td>Water Resources Systems Modeling</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with CEES 5373) Prerequisite: CEES 3213 or concurrent enrollment or instructor permission. Theory and concept of water resources management. An in-depth study of theory of optimization, hydrologic modeling, reservoir and dams operation. Data analysis and computational methods for hydrology and water resources management. Special emphasis on system modeling and parameter tuning using automatic calibration approaches. Basic level of scientific programming. No student may earn credit for both 4373 and 5373. (F)</td>
<td></td>
</tr>
<tr>
<td>CEES 4423</td>
<td>CEES Professional Internship or Co-op</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: completion of at least 19 hours of Civil Engineering and Environmental Science (CEES) coursework (for Civil Engineering and Environmental Engineering majors); or completion of at least 19 hours of CEES and science coursework (for Environmental Science majors); or completion of at least 19 hours CEES and Architecture (ARCH) coursework (for Architectural Engineering majors). Provides three hours of professional elective credit for 400 hours of internship. Prior to starting the internship, students should write a proposal of planned activities and secure the approval from a CEES faculty member to serve as an of the advisor. After completion of the internship or co-op, the students should enroll in this course. The student must then submit a written report, and make an oral presentation for a three-member review committee that includes the faculty advisor. (F, Sp, Su)</td>
<td></td>
</tr>
<tr>
<td>CEES G4453</td>
<td>Geomatics Engineering</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisites: CEES 2213, CEES 3403 and MATH 2433 or MATH 2934 or instructor permission. Geomatics engineering deals with the science of determining relative positions of features for mapping, engineering and construction plans. Topics include digital leveling, orientation, distance measurement, traversing and control surveys, accuracy, error sources, precise horizontal and zenith angle measurements, and introduction of global navigation satellite system. Laboratory (F)</td>
<td></td>
</tr>
</tbody>
</table>
CEES 4663 Introduction to Matrix Methods in Structural Analysis 3 Credit Hours
Prerequisite: CEES 3413. Review of matrix algebra and solution of linear equations; energy concepts and principle of virtual work; fundamentals of flexibility and stiffness methods; coordinate transformation and matrix assemblage; computer-oriented direct stiffness method and computer code developments; secondary effects; support settlement and temperature change; method of finite differences and application to beam and plate problems. (F or Sp)

CEES 4753 Structural Design - Wood 3 Credit Hours
Prerequisite: CEES 3413 or equivalent. Material properties and behavior of wood. Analysis and design of solid and laminated structural members, connections, systems, trusses and arches. Current developments in structural wood design and research. (F)

CEES 4843 Hydrology 3 Credit Hours
(Slashlisted with CEES 5843) Prerequisite: MATH 2924/2423 and CEES 4253 (pre-or co-requisite) or instructor permission. Hydrology is the study of water across the globe. This is an applied course on hydrology dealing with environmental water problems; principles of hydrologic systems, their structure and components; and methods of analysis and their application to various purposes of water resources planning and development. No student may earn credit for both 4843 and 5843. (Sp)

CEES 4883 Traffic Analysis, Design and Control 3 Credit Hours
Prerequisite: CEES 3883 or Permission of Instructor. Study of fundamentals of traffic engineering; components of the traffic system; intersection types and design elements; basic variables of the traffic system (flow, capacity, level of service, delay); design and analysis of traffic signals and intersections; traffic control and traffic impact analysis; safety performance and traffic crash analysis; use of the Highway Capacity Manual and traffic analysis software. (F)

CEES 4901 Introduction to CE Capstone 1 Credit Hour
Prerequisites: Senior standing in Civil Engineering. Introduction to the capstone design project, which is a two-semester-long, open-ended engineering design problem that requires applying the skills and techniques acquired in earlier engineering course work. This course will focus on introducing the project requirements; forming multi-disciplinary teams of students; developing team identities; assigning team roles; evaluating project constraints; and developing a project design schedule. (F)

CEES 4903 Civil Engineering Capstone 3 Credit Hours
Prerequisite: CEES 3213, and CEES 3363, and CEES 3663 or CEES 3673, and CEES 4901. Solution of major design problems by a team approach of disciplines. Problems to be varied within the areas of civil engineering (structural; geotechnical; and transportation) according to the student's major interest. The capstone project will be under direct faculty supervision. (Sp) [V]

CEES 4911 Introduction to ES Capstone 1 Credit Hour
Prerequisite: Senior standing in Environmental Science. Introduction to the capstone design project, which is a two-semester-long, open-ended engineering design problem that requires applying the skills and techniques acquired in earlier engineering course work. This course will focus on introducing the project requirements; forming multi-disciplinary teams of students; developing team identities; assigning team roles; evaluating project constraints; and developing a project design schedule. (F)

CEES 4913 Environmental Science Capstone 3 Credit Hours
Prerequisite: CEES 4114, CEES 4324, CEES 4911; and CEES 4253 co-requisite. The capstone experience draws upon undergraduate course work in environmental science, biology, chemistry, physics, mathematics, and related sciences. Student teams address a client-driven, open-ended, real-world problem. Faculty coordinators serve in advisory capacities only, introducing field, laboratory, and computer methods and coordinating class meetings and presentations. Any other in-class presentations cover non-traditional (non-technical) topics. (Sp) [V]

CEES 4921 Introduction to EE Capstone 1 Credit Hour
Prerequisites: Senior standing in Environmental Engineering. Introduction to the capstone design project, which is a two-semester-long, open-ended engineering design problem that requires applying the skills and techniques acquired in earlier engineering course work. This course will focus on introducing the project requirements; forming multi-disciplinary teams of students; developing team identities; assigning team roles; evaluating project constraints; and developing a project design schedule. (F)

CEES 4923 Environmental Engineering Capstone 3 Credit Hours
Prerequisite: CEES 3213, CEES 4114, CEES 4324, CEES 4921; CEES 4253 or concurrent enrollment. The capstone experience is a course where students draw upon their undergraduate course work for analysis of an open-ended, real world problem. Faculty coordinators serve in advisory capacities only. All in-class presentations will cover non-traditional (non-technical) topics. Students are presumed to have been trained in basic natural and engineering sciences and introduced to environmental sampling/analysis and impact/assessment methods. (Sp) [V]

CEES 4943 Air Quality Management 3 Credit Hours
Prerequisite: CEES 2313 or CEES 2223 or instructor permission. Important aspects of air quality will be covered, including air quality legislation, major sources and effects of air pollutants, monitoring, atmospheric dispersion, and air quality modeling. (Sp)

CEES 4951 Contemporary Topics in Professional Practice 1 Credit Hour
Prerequisite: Junior standing in Civil Engineering or Environmental Engineering. Civil engineering is a dynamic profession, as methods of practice evolve to address the many pressing problems in today's built and natural environment. This course provides an introduction to contemporary topics in professional practice, such as basic concepts of sustainability in engineering design, modern tools for project management, and the role of business/policy considerations in practice. (F)

CEES 4960 Directed Readings 1-4 Credit Hours
1 to 4 hours. Prerequisite: good standing in University; permission of instructor and dean. May be repeated; maximum credit four hours. Designed for upper-division students who need opportunity to study a specific problem in greater depth than formal course content permits. (Irreg.)

CEES 4970 Special Topics/Seminar 1-3 Credit Hours
1 to 3 hours. Prerequisite: Senior standing or permission of instructor. May be repeated; maximum credit nine hours. Special topics or seminar course for content not currently offered in regularly scheduled courses. May include library and/or laboratory research and field projects. (Irreg.)

CEES 4980 Environmental Science Senior Research 1-12 Credit Hours
Prerequisite: senior standing. Maximum credit twelve hours. Intensive research investigation of a special project under the direction of a faculty member. (F, Sp, Su)
CEES 4990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: Senior standing and permission of instructor. May be repeated; maximum credit nine hours. Contracted independent study for a topic not currently offered in regularly scheduled courses. Independent study may include library and/or laboratory research and field projects. (Irreg.)

CEES 4991 Introduction to AE Capstone 1 Credit Hour
Prerequisite: senior standing in Architectural Engineering. Introduction to the capstone design project, which is a two-semester-long, open-ended engineering design problem that requires applying the skills and techniques acquired in earlier engineering coursework. This course will focus on introducing the project requirements; forming multi-disciplinary teams of students; developing team identities; assigning team roles; evaluating project constraints; and developing a project design schedule. (F)

CEES 4993 Architecture Engineering Capstone 3 Credit Hours
Prerequisite: CEES 3663, CEES 3673, CEES 4991 and AME 4653; CEES 4113 and CEES 4333 or concurrent enrollment. A capstone course emphasizing design of structural components and environmental systems of buildings. Requires students to have knowledge and skills from prerequisite courses to address a real-world, open-ended design problem. (Sp) [V].

CEES 5010 Civil Engineering Problems 1-4 Credit Hours
Prerequisite: senior or graduate standing and permission of instructor. May be repeated; maximum credit four hours for a master’s program or six hours for a doctoral program, including hours taken as part of another graduate program. Independent or small group study under the supervision of one or more faculty members. (F, Sp, Su)

CEES 5020 Special Topics in Civil Engineering 1-6 Credit Hours
1 to 6 hours. Prerequisite: senior or graduate standing and permission of instructor. May be repeated with change of topic; maximum credit twelve hours. Examines subject matter in civil engineering not covered by existing course offerings as a regular course. (F, Sp, Su)

CEES 5021 Technical Communications 1 Credit Hour
Prerequisite: CEES graduate standing or permission of instructor. Focused on enabling students to improve oral and written communications skills. Examines appropriate formats for various technical publications, as well as methods and practices for developing effective oral presentations. Each student will be required to develop an oral presentation about his/her written product. (F, Sp, Su)

CEES 5103 Water Policy and Institutions 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course examines the evolution of water policy in the United States and the substantive roles that federal and state water resource institutions have played. Students will gain an understanding of the legal and institutional frameworks within which water resources are managed and the broader implications of climate change for water security. (F)

CEES 5113 Water Management Chemistry 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course provides knowledge of water chemistry encountered in the management and assessment of water quality. Course goals are: 1) to become proficient interpreting water chemistry data so to be able to successfully evaluate the water quality status of a water resource, and 2) to know which specific water chemistry parameters are essential to measure for monitoring water quality problems. (F)

CEES 5114 Aquatic Chemistry 4 Credit Hours
(Slashlisted with 4114) Prerequisite: graduate standing, one year general chemistry. Environmental kinetics and thermodynamics in aquatic systems; acid/base, precipitation/solubility, metal complexation and oxidation/reduction reactions; environmental colloidal and solid-liquid interface chemistry. No student may earn credit for both 4114 and 5114 or Environmental Science 4114 and 5114. Laboratory. (F)

CEES 5123 Climate Change and Impacts on Water Energy Food Nexus 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. An interdisciplinary course to learn the basics of climate change and its impacts on the interactions among water, energy and food nexus. The course provides fundamental theories of climate change, water cycle, and technologies about renewable energy (hydro, wind, solar, ocean, biomass, geothermal) and non-renewable energy (fossil fuels). The course talks about global food production and teaches basic Python programming. (Sp)

CEES 5133 Water Sustainability 3 Credit Hours
(Crosslisted with CH E 5133) Prerequisite: Civil Engineering, Environmental Engineering, or Environmental Science Graduate standing; or permission of instructor. Introduction to water reclamation and reuse. Wastewater characteristics. Conventional approaches for wastewater treatment. Emerging materials and technologies for water remediation. Water reuse applications and outlook. (Irreg.)

CEES 5153 Water Innovation: Technology, Policy, and Organizational Issues 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course encompasses water technologies and their extended innovation processes in three substantive sections. A basic understanding of technological innovation frameworks precedes discussion of water systems. The second section addresses water policy in general as well as specific cases of policy innovation. The final section covers organizations and how they can become more innovative with respect to water systems. (Sp)

CEES 5244 Physicochemical Water Treatment Processes 4 Credit Hours
Prerequisite: graduate standing or permission of instructor. Physical and chemical processes for drinking water, ground water and industrial water treatment. Processes discussed include coagulation/floculation, gravity separation, filtration, disinfection, adsorption, advanced oxidation, and phase transfer (e.g., air stripping). (Sp even years)

CEES 5313 Engineering Geology 3 Credit Hours
Prerequisites: CEES 3363, CEES 3361 and permission of instructor. Understanding geology in engineering design and mitigation: topics include weathering and soil-forming processes; engineering properties of rock; landslides and debris flow (slope stability); fluvial processes and hazards; land subsidence; expansive soil; hazard, risk and land-use planning. (F)

CEES 5323 Geosynthetics 3 Credit Hours
Prerequisites: CEES 3363 and CEES 3361. To introduce students to concepts and design methods involving the use of geosynthetics in geotechnical and transportation engineering applications. (F)

CEES 5324 Environmental Biology and Ecology 4 Credit Hours
(Slashlisted with CEES 4324) Prerequisite: graduate standing in Environmental Science. Examines applied environmental biology; biological consequences of environmental impacts; mitigation of environmental impacts via biogeochemical, ecological and microbial processes. No student may earn credit for both 4324 and 5324. Laboratory (F)
CEES 5343 Advanced Soil Mechanics 3 Credit Hours
Prerequisites: CEES 3363, CEES 3361 and permission of instructor. Advanced treatment of theories and principles of shearing strength, stress distribution and settlement analysis. (F)

CEES 5353 Introduction to Soil Dynamics 3 Credit Hours
Prerequisite: 3364 or permission of instructor. Review of basic concepts (single- and multi-degree of freedom system, wave propagation, behavior of dynamically loaded soils), liquefaction, vibrations of footings on elastic half space, analog models, dynamics of pile foundations, machine foundations, design of foundations for dynamic loads including earthquake loading. (Irreg.)

CEES 5363 Ecological Engineering Science 3 Credit Hours
(Slashlisted with CEES 4363) Prerequisite: senior or graduate standing. Exploration of the design of sustainable ecosystems integrating human society with its natural environment for the benefit of both. Uses a systems perspective that resilient and sustainable solutions involve working with natural ecological and biogeochemical processes and not against them, and require less fossil fuel input, produce less pollution, and represent cost-effective alternatives to traditional energy-and resource-intensive technologies. No student may earn credit for both 4363 and 5363. (Sp)

CEES 5373 Water Resources Systems Modeling 3 Credit Hours
(Slashlisted with CEES 4373) Prerequisite: Graduate standing or permission of instructor. Theory and concept of water resources management. An in-depth study of theory of optimization, hydrologic modeling, reservoir and dams operation. Data analysis and computational methods for hydrology and water resources management. Special emphasis on system modeling and parameter tuning using automatic calibration approaches. Basic level of scientific programming. No student may earn credit for both 4373 and 5373. (F)

CEES 5383 Earthquake Engineering 3 Credit Hours
Prerequisite: senior or graduate standing. To provide students with an understanding of the effects of earthquakes on civil engineering structures and analytical tools for their seismic analysis. (F)

CEES 5393 Reinforced Soil Structures 3 Credit Hours
Prerequisites: CEES 3363 and CEES 3361. Introduce students to the analysis and design methods related to geotechnical structures reinforced with geosynthetics. The main focus of this course will be on reinforced soil walls, slopes and embankments. (Sp)

CEES 5413 Soil-Structure Interaction 3 Credit Hours
Prerequisite: Graduate standing and CEES 3363, or permission of instructor. Introduction-definition, methods of solution; beams on deformable foundations; analysis and design of axially loaded structures – single pile, pile groups, retaining walls; plates on deformable foundations; role of interfaces and joints; wave equation for pile behavior. (Irreg.)

CEES 5433 In-Situ Soil Testing 3 Credit Hours
Prerequisites: CEES 3363, CEES 3361 and permission of instructor. This is a "hands-on" course that focuses on conducting and interpreting laboratory and in-situ tests for geotechnical engineering. Topics can include but are not limited to drilling, sampling, soil characterization, triaxial shear testing, one-dimensional compression, flexible wall permeability testing, pressuremeter, cone penetrometer, borehole shear, and pile load testing. Laboratory (Sp)

CEES 5443 Unsaturated Soil Mechanics 3 Credit Hours
Prerequisites: CEES 3363 and CEES 3361. Provide students with an understanding of the theoretical and practical fundamentals of unsaturated soil mechanics with applications in geotechnical engineering. (F)

CEES 5473 Forensic Geotechnical Engineering 3 Credit Hours
Prerequisites: CEES 3363 and CEES 3361. Examines methods for investigating and analyzing geotechnical failures. Examples include slope failures, pavement subgrade failures, foundation failures, excessive seepage from earth dams, and excavation failures. The course also addresses the role of the engineer as a consultant and/or expert witness in legal cases involving geotechnical failures. (F or Sp)

CEES 5493 Transportation and Land Development 3 Credit Hours
(Crosslisted with RCPL 5493) Prerequisite: graduate standing or permission. Study of interactions between land development activity and the transportation network. Application of planning and design techniques to manage the impacts of development upon the transportation system.

CEES 5503 Highway Engineering 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. In this course, students will study geometric elements of highway design, with emphasis on highway safety and traffic flow, design controls, route analysis, and alignment. Highway engineering includes corridor selection, design of vertical and horizontal alignments, evaluation of earthwork requirements, drainage and culvert design, and safety considerations. (Su)

CEES 5513 Traffic Engineering 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course focuses on traffic flow theory, analysis of traffic data, and advanced technology applications for data collection, traffic control, and real-time system management. It will include emphasis on highway capacity, signal integration, intelligent transportation systems (ITS), and impacts of advanced technology, including automated vehicles. (Sp)

CEES 5523 Transportation Asset Management 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course focuses on fundamental elements of transportation asset management and application of its principles; explores the impetus, philosophy, and policy for implementing a long term, comprehensive plan for managing infrastructure assets; presents engineering and economic analysis concepts and processes used to evaluate and support strategic and systematic planning, finance, investment, performance, measurement, management, and preservation of a transportation system. (Su)

CEES 5533 Multimodal Transportation 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. Course focuses on fundamental elements of system performance for the multimodal transportation system and application of its principles; explores the impetus, philosophy, and policy for implementing a long term, comprehensive plan; presents transportation modes, including land, air and marine, modal shift and impact; presents engineering/economic analysis concepts used to evaluate and support planning, design, and financing processes for multimodal system. (Su)

CEES 5583 Water Law 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. A course for non-lawyers that explores systems of water rights; riparian, appropriation, and prescriptive rights; stream, surface, and ground water; development of water supplies; nationwide conflicts; water pollution control; federal and Indian rights and federal water resource issues and problems, so that water managers, environmental scientists or policy makers can provide needed input to threats to and protection of water. (Su)
CEES 5623 Watershed Management and Restoration 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. Course provides a comprehensive examination of watershed assessment, management, planning, protection, and restoration. Processes governing drainage-basin scale physiography, hydrology, hydrogeomorphology, and ecology are examined, emphasizing water quality-driven approaches to watershed management and restoration. (F even years)

CEES 5624 Biological Waste Treatment 4 Credit Hours
Treatment of waste using biological processes; emphasis on treatment kinetics, municipal wastewater treatment processes, and design of municipal wastewater unit processes; application of biological treatment concepts to other wastes including industrial wastes, groundwater, and solid or hazardous wastes. Laboratory (F)

CEES 5643 Quantitative Hydrometeorology 3 Credit Hours
(Crosslisted with METR 5643) Prerequisite: Graduate standing or permission of instructor. Theory and concept of hydrometeorology and remote sensing, across atmospheric science and hydrology and across water science and engineering. An in-depth study of precipitation estimation from in-situ, radar, satellite, uncertainty modeling and decision making. Data analysis and computational methods for hydrometeorology. Special emphasis on probabilities/statistics and decision making. Basic level of scientific programming is helpful but not mandatory. (Irreg.)

CEES 5653 Advanced Mechanics of Materials 3 Credit Hours
Prerequisite: CEES 2153 or PE 2153 and senior or graduate standing. Principal stresses and strains; theories of failure; introduction to elasticity; unsymmetrical bending and shear; torsion of noncircular solid cross sections, cellular sections and open sections; introduction to plate bending and buckling. (F)

CEES 5663 Structural Analysis II 3 Credit Hours
Prerequisite: Graduate standing and CEES 3413, or permission of instructor. This course addresses many of the classical methods used in the analysis of structures before the advent of the computer, such as virtual work, force method, slope-deflection, and approximate methods. Second-order analysis, stability, and matrix methods are also covered, and modern structural analysis software is introduced. (Sp)

CEES 5673 Colloid and Surface Science 3 Credit Hours
(Crosslisted with CH E 5673) Prerequisite: Civil Engineering, Environmental Engineering, or Environmental Science Graduate standing or permission of instructor. Capillarity, surface thermodynamics, adsorption from vapor and liquid phases, contact angles, micelle formation, solubilization, emulsions and foams. Applications to be discussed include detergency, enhanced oil recovery and adsorption for pollution control. (Irreg.)

CEES 5683 Dynamics of Structures 3 Credit Hours
Prerequisite: Graduate standing, CEES 3263, and CEES 3413. Topics covered include free vibration, forced vibration, and transient response of structures having one, multiple or infinite number of degrees-of-freedom; structural damping effects; numerical solution techniques; Lagrange's equation of motion; and Rayleigh-Ritz method. General matrix formulation for multiple degrees-of-freedom and modal coordinate transformation. Introduction to earthquake engineering concepts. (F)

CEES 5693 Structural Design of Pavements 3 Credit Hours
Prerequisites: CEES 3363, 3361 and 3883. Effect of load and climate on the design of rigid and flexible pavements and interaction of pavement components. (Irreg.)

CEES 5723 Design of RC Structures with Fiber Reinforced Polymers 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This class will be focused on understanding behavior of Fiber Reinforced Polymer (FRP) materials; the design of reinforced concrete structures using FRP reinforcement; the strengthening of existing structures using FRP materials. (F)

CEES 5733 Hydroclimatology 3 Credit Hours
(Crosslisted with METR 5733) Prerequisite: Graduate standing or permission of instructor. Theory and concept of hydroclimatology across atmospheric science and hydrology. An in-depth study of the local to global climate of precipitation with specific foci on drought, pluvials, and how they vary in a changing climate system. Data analysis and computational methods for hydroclimatology. Basic level of scientific programming is helpful but not mandatory. (Su)

CEES 5763 Introduction to Finite Element Method 3 Credit Hours
(Crosslisted with AME 5763) Prerequisite: graduate standing. Weighted residual and variational approaches. Finite element formulation for rod, truss and beam elements; plane stress and plane strain problems; axi-symmetric and three-dimensional analysis; isoparametric elements; conforming and nonconforming plate and shell elements. (Sp)

CEES 5773 Structural Design—Steel II 3 Credit Hours
Prerequisite: CEES 3663. Advanced structural steel design including steel deck diaphragms, column and beam bracing, composite beam design, rigid frame design, torsional member design, plate girder design, and design of building connections. (F or Sp)

CEES 5783 Structural Design—Concrete II 3 Credit Hours
Prerequisite: CEES 3673. Advanced reinforced concrete behavior and design including limit design, anchorage slender columns, truss models for shear and torsion on beams, two-way and flat slabs, and the art of detailing. (F or Sp)

CEES 5793 Design of Prestressed Concrete Structures 3 Credit Hours
Prerequisite: CEES 3673. Design procedures for pretensioned and post-tensioned concrete structures, with emphasis on the behavior of prestressed concrete. Topics include methods of analysis, time dependent effects, fabrication and construction procedures, connections, highway bridges, frames, composite construction, continuous structures, and anchorage zone detailing. (Irreg.)

CEES 5813 Water Treatment, Reuse, and Health Impacts 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. An introduction to water quality applications and the health impacts of water and wastewater. The course covers the basic principles of public health epidemiology and water-related diseases. Conventional and advanced water treatment methods are presented, along with various types of potable and non-potable water reuse to supplement public water supply in times of water stress. (Sp)

CEES 5833 Ground Water Quality Protection 3 Credit Hours
Prerequisite: graduate standing or permission. Introduction to ground water quality protection. Covers sources of ground water, ground water hydrology, ground water information sources, ground water pollution sources, subsurface transport and fate processes and monitoring of ground water systems. (F)
CEES 5843 Hydrology 3 Credit Hours
(Slashlisted with CEES 4843) Prerequisite: Graduate standing or permission of instructor. Hydrology is the study of water across the globe. This is an applied course on hydrology dealing with environmental water problems; principles of hydrologic systems, their structure and components; and methods of analysis and their application to various purposes of water resources planning and development. No student may earn credit for both 4843 and 5843. (Sp)

CEES 5853 Groundwater and Seepage 3 Credit Hours
Prerequisite: graduate standing in civil engineering, environmental science or geology or permission. An applied course dealing with properties of aquifers, modeling of groundwater flow, groundwater hydrology and its interrelation with surface water; well hydraulics, pumping tests and safe yield of aquifers. (F)

CEES 5857 Water Quality Management 3 Credit Hours
Prerequisite: MATH 3113, and graduate standing, or instructor permission. Water quality in lakes, rivers, estuaries; chemical, physical and biological aspects of marine and fresh waters; waste assimilation; system modeling; water quality management; waste load allocation, and engineer controls. (Sp)

CEES 5883 Environmental Modeling 3 Credit Hours
Prerequisite: MATH 3113, graduate standing or instructor permission. Introduction to theoretical and practical issues of computer-based environmental modeling. Covers problem formulation, implementation, and application. Topical areas include conceptualizing problems, conservation laws, partial differential equations, numerical methods, and applications ranging from coastal hydrodynamics to contaminant transport. Emphasis on understanding the model process rather than using “canned” models. (F)

CEES 5903 Remote Sensing Hydrology 3 Credit Hours
Prerequisite: senior standing, or graduate standing, or permission of instructor. Overview of various orbital satellite platforms/sensors and introduces advances in remote sensing hydrology from space-borne observations, state-of-the-art retrieval algorithms for hydrological variables, and ground validation strategies. Required for Hydrology minors. (Sp)

CEES 5933 Climate Change and Water Sustainability 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This seminar course is for students who wish to understand the Earth’s climate variability and water sustainability. In the context of an integrated Earth climate system, the course provides an overview of global water resources, impacts of climate change on various systems, and recommends practical responses to mitigate climate change. (F)

CEES 5960 Directed Readings 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing and permission of department. May be repeated; maximum credit twelve hours. Directed readings and/or literature reviews under the direction of a faculty member. (F, Sp, Su)

CEES 5963 Water Security 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. This course defines water security as existing at the water quantity-quality-equity nexus, looks at historical examples of water insecurity, discusses major water security challenges (e.g., natural disasters, global warming, the water-food-energy nexus, urbanization, transboundary issues) as well as responses to these challenges (e.g., water resilience plans, LID, desalination/reuse technologies, developing a water ethic) and evaluates pioneering water security initiatives. (Sp)

CEES 5970 Special Topics/Seminar 1-3 Credit Hours
1 to 3 hours. Prerequisite: Graduate standing or permission of instructor. May be repeated; maximum credit nine hours. Special topics or seminar course for content not currently offered in regularly scheduled courses. May include library and/or laboratory research and field projects. (Irreg.)

CEES 5973 Fundamental Hydrology 3 Credit Hours
Prerequisite: Graduate standing or permission of instructor. A science-based course for students who desire to be water managers, environmental scientists, or policy makers. The course provides a quantitative introduction to atmospheric, surface, and subsurface hydrology. Modules present the storage and movement of water between the environmental compartments, the effect of human activities on the natural water cycle, and the threats to and protection of water security. (Sp)

CEES 5980 Research for Master's Thesis 2-9 Credit Hours
Variable enrollment, two to nine hours; maximum credit applicable toward degree, four hours. (F, Sp, Su)

CEES 5982 CEES Non-Thesis Project 2 Credit Hours
Prerequisite: graduate standing and instructor permission. This is for all CEES non-thesis students to take as their final project for their non-thesis defense. Each student with their faculty advisor will determine what the project will cover. Each student will be required to develop an oral presentation about his/her written project. (F, Sp, Su)

CEES 5990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: Graduate standing and permission of instructor. May be repeated; maximum credit nine hours. Contracted independent study for a topic not currently offered in regularly scheduled courses. Independent study may include library and/or laboratory research and field projects. (Irreg.)

CEES 6663 Advanced Finite Element Methods 3 Credit Hours
(Crosslisted with AME 6663) Prerequisite: 5763. Selected topics such as: nonlinear material problems, plasticity, creep (visco-plasticity), fracture, etc.; geometrically nonlinear problems, large displacement and structural stability; dynamic problems and analytical solution procedures; soil-structure interactions; application of finite element method to fluid and heat transfer problem. (Irreg.)

CEES 6960 Directed Readings 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing or permission of instructor. May be repeated; maximum credit six hours. Directed readings and/or literature review under the direction of a faculty member. (Irreg.)

CEES 6970 Special Topics/Seminar 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing or permission of instructor. May be repeated; maximum credit 12 hours. Special topics or seminar course for content not currently offered in regularly scheduled courses. May include library and/or research and field projects. (Irreg.)

CEES 6980 Research for Doctoral Dissertation 2-16 Credit Hours
2 to 16 hours. Prerequisites: Graduate standing and permission of instructor; may be repeated. Directed research culminating in the completion of the doctoral dissertation. (F, Sp, Su)

CEES 6990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: Graduate standing and permission of instructor. May be repeated; maximum credit nine hours. Contrated independent study for a topic not currently offered in regularly scheduled courses. Independent study may include library and/or laboratory research and field projects. (Irreg.)
<table>
<thead>
<tr>
<th>Last Name</th>
<th>First/Middle Name</th>
<th>Middle init.</th>
<th>OU Service start</th>
<th>Title(s), date(s) appointed</th>
<th>Degrees Earned, Schools, Dates Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basara</td>
<td>Jeffrey</td>
<td>B</td>
<td>1995</td>
<td>ASSOCIATE PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2019; ASSOCIATE PROFESSOR OF METEOROLOGY, 2012; RESEARCH SCIENTIST OF OKLAHOMA CLIMATOLOGICAL SURVEY, 2001</td>
<td>PhD, Univ. of Oklahoma, 2001; MS, Univ. of Oklahoma, 1998; BS, Purdue Univ, 1994</td>
</tr>
<tr>
<td>Bui</td>
<td>Ngoc</td>
<td></td>
<td>2020</td>
<td>ASSISTANT PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2020; ASSISTANT PROFESSOR OF CHEMICAL, BIOLOGICAL AND MATERIALS ENGINEERING, 2020</td>
<td>PhD, Univ. of Connecticut, 2014; MS, Chonnam National Univ, 2007; BS, HoChiMinh City Univ. of Technology, 2005</td>
</tr>
<tr>
<td>Butler</td>
<td>Elizabeth</td>
<td></td>
<td>1999</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2010</td>
<td>PhD, Univ. of Michigan, 1998; MS, Univ. of Maryland, 1991; BS, Univ. of Maryland, 1985</td>
</tr>
<tr>
<td>Cerato</td>
<td>Amy</td>
<td></td>
<td>2005</td>
<td>ROBERT GLENN RAPP FOUNDATION PRESIDENTIAL PROFESSOR, 2009; PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2016</td>
<td>PhD, Univ of Massachusetts, 2005; MS, Univ of Massachusetts, 2004; MS, Univ of Massachusetts, 2001; BS, Lafayette College, 1999</td>
</tr>
<tr>
<td>Floyd</td>
<td>Royce</td>
<td></td>
<td>2012</td>
<td>ASSOCIATE PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2018</td>
<td>PhD, Univ of Arkansas, 2012; BS, Univ of Arkansas, 2008</td>
</tr>
<tr>
<td>Hatami</td>
<td>Kianoosh</td>
<td></td>
<td>2004</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2017; PRESIDENT’S ASSOCIATES PRESIDENTIAL PROFESSOR, 2018</td>
<td>PhD, McMaster Univ, 1997; MS, Univ of Iran, 1991; BS, Univ of Iran, 1987</td>
</tr>
<tr>
<td>Kibbey</td>
<td>Tohren C</td>
<td></td>
<td>1999</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2010; LLOYD G. AND JOYCE AUSTIN PRESIDENTIAL PROFESSOR, 2016</td>
<td>PhD, Univ of Michigan, 1997; MSE, Univ of Michigan, 1993; BSE, Univ of Michigan, 1991</td>
</tr>
<tr>
<td>Kirstetter</td>
<td>Pierre-Emmanuel</td>
<td></td>
<td>2019</td>
<td>ASSOCIATE PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2019; ASSOCIATE PROFESSOR OF METEOROLOGY, 2019</td>
<td>PhD, Joseph Fourier University, 2008; MS, Joseph Fourier University, 2005; MS Ecole Nationale Superieure d’Hydraulique et de Mecanique of Grenoble, 2004</td>
</tr>
<tr>
<td>Kyprioti</td>
<td>Alkaterini</td>
<td></td>
<td>2022</td>
<td>ASSISTANT PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2022</td>
<td>PhD, Univ of Notre Dame, 2022; MS, Univ of Notre Dame, 2022; MS, Aristotle Univ of Thessaloniki, 2016; BS, Aristotle Univ of Thessaloniki, 2014</td>
</tr>
<tr>
<td>Name</td>
<td>Rank/Affiliation</td>
<td>Year</td>
<td>Graduate Institutions and Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>--------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miller Gerald A</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, ROBERT GLENN RAPP FOUNDATION PRESIDENTIAL PROFESSOR, 2013</td>
<td>1994</td>
<td>PhD, Univ of Massachusetts, 1994; MS, Clarkson, 1989; BS, Clarkson, 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nairn Robert</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, SUN OIL COMPANY CHAIR IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2012; SAM K. VIERSON FAMILY FOUNDATION PRESIDENTIAL PROFESSOR, 2014; DAVID L. BOREN PROFESSORSHIP</td>
<td>1997</td>
<td>PhD, Ohio State Univ, 1996; BS, Juniata College, 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanny Mark A</td>
<td>PROFESSOR OF EARTH AND ENERGY, PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE</td>
<td>1996</td>
<td>PhD, Univ of Illinois, 1994; MS, Univ of Illinois, 1989; BS, Wayne State, 1986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pei Jinsong</td>
<td>ASSOCIATE PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, SUN OIL COMPANY CHAIR IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE</td>
<td>2002</td>
<td>PhD, Columbia Univ, 2001; M Eng, Nanyang Tech Univ, 1997; B Eng, Xi'an Jiaotong Univ, 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabatini David A</td>
<td>SUN OIL COMPANY CHAIR IN CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, DAVID ROSS BOYD PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE</td>
<td>1989</td>
<td>PhD, Iowa State, 1988; MSCE, Memphis State, 1985; BSCE, Univ of Illinois, 1981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadri Arif</td>
<td>ASSISTANT PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, 2022</td>
<td>2022</td>
<td>PhD, Purdue Univ, 2016; MS, Purdue Univ, 2012; BS, Bangladesh Univ of Engr & Tech, 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vemuganti Shreya</td>
<td>ASSISTANT PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE</td>
<td>2021</td>
<td>PhD, Univ of New Mexico, 2021; MS, Univ of New Mexico, 2016; BE, Osmania Univ, 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vogel Jason R</td>
<td>PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, DIRECTOR, OKLAHOMA WATER SURVEY, 2017</td>
<td>2017</td>
<td>PhD, Oklahoma State Univ, 2001; MS, Texas A&M Univ, 1997; BS, Univ of Nebraska, 1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang Tiantian</td>
<td>ASSISTANT PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE</td>
<td>2018</td>
<td>PhD, Univ of California Irvine, 2015; MS, Univ of California, 2010; BS, Tsinghua Univ, 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zaman Musharraf</td>
<td>KERR MCGEE PRESIDENTIAL PROFESSOR, DAVID ROSS BOYD PROFESSOR OF CIVIL ENGINEERING AND ENVIRONMENTAL SCIENCE, PROFESSOR OF PETROLEUM AND GEOLOGICAL ENGINEERING, ALUMNI CHAIR IN PETROLEUM AND GEOLOGICAL ENGINEERING</td>
<td>1982</td>
<td>PhD, Univ of Arizona, 1982; MS, Carleton Univ, 1979; BS, Bangladesh Univ of Engr & Tech, 1975</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>