General Information
School History
Graduate instruction and research in computer science began in 1969 at the University of Oklahoma with the creation of a unit called Information and Computing Sciences. This unit was under the direct supervision of the Provost until 1972, when it became part of the College of Engineering. An undergraduate program in computer science was added in 1976, and computer science became an integral part of the School of Electrical Engineering, which was later renamed as the School of Electrical Engineering and Computer Science. The first MS, degree in computer science was awarded in 1972, the first PhD, in 1973, and the first undergraduate degree in 1979-80. Computer Science remained in the School of Electrical Engineering and Computer Science until 1992, when the School of Computer Science was formed.

Beginning with the Spring 2010 semester, The School of Computer Science moved our operations to Devon Energy Hall. The five-story, 103,000-square-foot Devon Energy Hall has some of the latest in technological advancement in it’s classrooms, team rooms, teaching labs and research space, providing the best for our students of today and tomorrow.

Program Mission Statement
To generate and disseminate durable knowledge within and around the rapidly evolving discipline of computer science by:

• Educating bachelors, masters, and doctoral degree candidates within our discipline.

• Contributing to the education of degree candidates in related fields, including mathematics, meteorology, computer engineering, industrial and systems engineering, and electrical engineering.

• Generating knowledge in theoretical and applied topics within and around our discipline and disseminating the results.

• Contributing to professional societies within and around our discipline.

• Producing graduates who are highly sought by industry, government and universities.

Programs & Facilities
Computer Science Scholarships
The School of Computer Science is able to support many students through various scholarships. The requirements for these scholarships vary from merit-based to financial need. The department takes pride in the fact that many of the scholarships available to current and prospective students are set up by CS alumni.

Computer Science Software Studio
The Computer Science Software Studio provides student the opportunity to:

• Work on approved out-of-class projects with state-of-the-art software and hardware tools

• Be a part of collaborative teams

• Gain additional hands-on experience

• Participate in software competitions

• Connect with and learn from professionals in your field

• Contribute to both app and game development

• Enjoy tech talks and seminars

Undergraduate
COMPUTER SCIENCE PROGRAM EDUCATIONAL OBJECTIVES (PEO)

• Graduates succeed in problem solving professions using computer science expertise.

• Graduates succeed in software careers.

• Graduates may pursue and complete advanced degrees in computer science or other fields.

COMPUTER SCIENCE UNDERGRADUATE STUDENT OUTCOMES

• an ability to apply knowledge of computing and mathematics appropriate to the discipline

• an ability to analyze a problem, and identify and define the computing requirements appropriate to its solution

• an ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs

• an ability to use current techniques, skills, and tools necessary for computing practice

• an ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices

• an ability to apply design and development principles in the construction of software systems of varying complexity

BACHELOR OF SCIENCE
The Bachelor of Science in Computer Science provides a broad and flexible undergraduate curriculum. In addition to the general university requirements in the humanities and sciences, computer science students take courses covering the fundamentals of the discipline; courses in mathematics, natural science, and computer science. Accredited by the Computing Accreditation Commission of ABET.

MINORS
Students who wish to pursue a minor in computer science are strongly encouraged to check their proposed program with either the Williams Student Services Center for the College of Engineering (325-4096, Felgar Hall, rm. 112) or Dr. Deborah A. Trytten (325-4299, Devon Energy Hall, room 252).

• Computer Science Minor

• Computational Technology Minor
BACHELOR OF SCIENCE IN COMPUTER SCIENCE/MASTER OF SCIENCE

The accelerated Bachelor of Science in Computer Science/Master of Science program allows students to pursue a graduate degree in conjunction with the undergraduate degree requirements. The Bachelor of Science portion of the program is accredited by the Computing Accreditation Commission of ABET.

Graduate Master of Science

The Computer Science, Master of Science degree is designed for those wishing to improve their professional competence or to prepare for work towards a doctoral degree.

Doctoral Program

The Computer Science doctoral degree program aims to prepare and develop professionals capable of conducting and directing research within the discipline of computer science.

Courses

C S 1213 Programming for Non-Majors with Python
Prerequisite: Mathematics 1503 or concurrent enrollment. Introduction to the design and implementation of computer programs in the language Python. We will cover data types, control flow, iterations, functions, and the use of external libraries for text processing, graphics, image manipulation, web programming and others. Emphasis on problem solving with examples drawn from diverse disciplines. (F, Sp)

C S 1303 The Power and Elegance of Computational Thinking
Prerequisite: Math 1503 College Algebra. Introduction to computational thinking for students without a computer science background. Topics include using computing tools creatively, the role of abstraction, using data to gain insight, developing and expressing algorithms, programming and the impact of computing. (F, Sp) [I-O].

C S 1313 Programming for Non-Majors with C
Prerequisite: MATH 1523 or concurrent enrollment. Introduction to the design and implementation of computer programs. Emphasis on problem solving. Topics include: variables and constants, arithmetic and Boolean expressions, conditional statements, loops, procedures and functions, arrays, standard libraries, input and output, structures, and program documentation. (F, Sp)

C S 1321 Java for Programmers
Prerequisite: MATH 1523 or equivalent or concurrent enrollment; or placement into MATH 1743 or MATH 1823 or higher and departmental permission. Introduction to computer programming using the Java programming language for students who are already proficient in another programming language. Topics include: variables and constants, arithmetic and Boolean expressions, conditional statements, repetition, methods, arrays, linear and binary search, basic sorting algorithms, object-oriented programming, documentation, and testing. Students may not take this class after passing CS 2334. (F, Sp)

C S 1323 Introduction to Computer Programming for Programmers
Prerequisite: MATH 1523 or concurrent enrollment; or placement into MATH 1743 or MATH 1823 or higher and departmental permission. Introduction to the design and implementation of computer software with an emphasis on abstraction and program organization for students with some prior programming experience. Topics include: variables and constants, arithmetic and Boolean expressions, conditional statements, repetition, methods, arrays, linear and binary search, basic sorting algorithms, object-oriented programming, documentation, and testing. Students may not take this class after passing CS 2334. (F, Sp)

C S 1324 Introduction to Computer Programming for Non-Programmers
Prerequisite: Math 1523 or concurrent enrollment; or placement into MATH 1743 or MATH 1823 or higher and departmental permission. Introduction to the design and implementation of computer software with an emphasis on abstraction and program organization for students with no prior programming experience. Topics include: variables and constants, arithmetic and Boolean expressions, conditional statements, repetition, methods, arrays, linear and binary search, basic sorting algorithms, object-oriented programming, documentation, and testing. Students may not take this class after passing CS 2334. (F, Sp)

C S 2334 Programming Structures and Abstractions
Prerequisite: C S 1323 or 1321 or 1324, and MATH 1523 or higher. The design and implementation of computer programs using disciplined methodologies. Use of several abstract data types. Software reuse through encapsulation, composition, aggregation, inheritance, polymorphism, and generics. Topics include recursion, GUI development, file processing, and unit testing. A program design tool will be used. Introduction to ethics in computer science, including philosophical ethics theories. Discussion of intellectual property rights and privacy. (F, Sp)

C S 2413 Data Structures
Prerequisite: C S 2334 and MATH 1823 or 1914; and C S 2813 or MATH 2513. Representation, analysis and implementation of data structures and associated algorithms including: algorithm complexity, sorting algorithms, lists, stacks, queues, search trees (AVL, Red-Black, Splay, 2-3), Heaps, Graphs, and Hashing. Written communications required in some projects. Ethical issues and tools and techniques used in writing secure applications will also be discussed. The primary programming language is C++ with a debugging tool. (F, Sp)

C S 2603 Applied Logic for Hardware and Software
Prerequisite: C S 1323 and MATH 1823 or MATH 1914 with a C or better. Applications of logic in the analysis of hardware and software components. Topics include propositional and predicate calculus, Boolean algebra, combinational and sequential circuits, number systems and circuits for arithmetic, sets, inductive definitions, proof techniques including natural deduction, equational reasoning and mathematical induction. (F, Sp)

C S 2614 Computer Organization
Prerequisite: CS 2334. An introduction to the architecture, organization and design of uniprocessor-based computer systems. Topics include processor, control and memory design and organization, pipelining and vector processing, computer arithmetic, I/O organization, and computer systems security. (F, Sp)
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>C S 2813</td>
<td>Discrete Structures</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: C S 2334; MATH 2423 or MATH 2924 as prerequisite or concurrent enrollment. Introduction to the theory of discrete structures useful in computer science. Topics include combinatorics, relations, functions, computational complexity, recursions, and graph theory. (F, Sp)</td>
<td></td>
</tr>
<tr>
<td>C S 2970</td>
<td>Special Topics/Seminar</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Special Topics. 1 to 3 hours. May be repeated; Maximum credit nine hours. Special topics course for content not currently offered in regularly scheduled courses. May include library and/or laboratory research, and field projects. (Irreg.)</td>
<td></td>
</tr>
<tr>
<td>C S 3113</td>
<td>Introduction to Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: C S 2413 and C S 2813 or MATH 2513, and C S 2614 or ECE 2214. An introduction to the major concepts and techniques of designing and implementing operating systems including: memory management, process management, information management, and computer security. Principles of performance evaluation. Class projects require the design and implementation of software systems. A UNIX family operating system will be used. (F)</td>
<td></td>
</tr>
<tr>
<td>C S 3203</td>
<td>Software Requirements and Specifications</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: C S 2413 and C S 2813 or MATH 2513. Students gain technical and professional skills by performing requirements engineering. Learn the tools, techniques, and methods for modeling software systems. Students practice written and oral communication skills and consider the impact of computing on individuals, organizations and society, and demonstrate their ability to engage in lifelong learning by gaining background in a domain outside of their own. (F)</td>
<td></td>
</tr>
<tr>
<td>C S 3323</td>
<td>Principles of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: C S 2413, and C S 2813 or MATH 2513, and ENGL 3153 or BC 2813 or ENGR 2002 as a prerequisite or concurrent enrollment. An introduction to theoretical foundations and paradigms of programming languages. Topics include basic concepts such as lexical analysis, syntax analysis, type systems and semantics, some practical issues such as memory management and exception handling, and programming paradigms such as imperative programming, object-oriented programming, functional programming, and scripting. (Sp)</td>
<td></td>
</tr>
<tr>
<td>C S 3440</td>
<td>Mentored Research Experience</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0 to 3 hours. Prerequisites: ENGL 1113 or equivalent, and permission of instructor. May be repeated; maximum credit 12 hours. For the inquisitive student to apply the scholarly processes of the discipline to a research or creative project under the mentorship of a faculty member. Student and instructor should complete an Undergraduate Research & Creative Projects (URCP) Mentoring Agreement and file it with the URCP office. Not for honors credit. (F, Sp, Su)</td>
<td></td>
</tr>
<tr>
<td>C S 3823</td>
<td>Theory of Computation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: CS 2413 and CS 2813 or MATH 2513 or CS 5005 or DSA 5005. Introduction to abstract machine theory and formal language theory. Topics include Turing machines, finite/pushdown automata, deterministic versus nondeterministic computations, context-free grammars, and mathematical properties of these systems. (F)</td>
<td></td>
</tr>
<tr>
<td>C S 3960</td>
<td>Honors Reading</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated; maximum credit six hours. Consists of topics designated by the instructor in keeping with the student's major program. Covers materials not usually presented in the regular courses. (F, Sp)</td>
<td></td>
</tr>
<tr>
<td>C S 3970</td>
<td>Honors Seminar</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated with change of topic; maximum credit eight hours. Projects covered will vary. Deals with concepts not usually presented in regular coursework. (Irreg.)</td>
<td></td>
</tr>
<tr>
<td>C S 3980</td>
<td>Honors Research</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1 to 3 hours. Prerequisite: admission to Honors Program. May be repeated with change of subject matter; maximum credit six hours. Provides an opportunity for the gifted Honors candidate to work on a special project in the student's field. (F, Sp, Su)</td>
<td></td>
</tr>
<tr>
<td>C S 3990</td>
<td>Independent Study</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>1 to 3 hours. Prerequisite: permission of instructor and junior standing. May be repeated once with change of content. Independent study may be arranged to study a subject not available through regular course offerings. (F, Sp, Su)</td>
<td></td>
</tr>
<tr>
<td>C S 4005</td>
<td>Computing Structures</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Prerequisite: permission of graduate liaison. This course has three parts: discrete mathematics, object-oriented programming in C++, and data structures in C++. As part of the discrete mathematics students will be introduced to combinatorics, logic, relations, functions, computational complexity, automata, and graph theory. Students will be introduced to the fundamentals of object-oriented programming and learn to design, build, and analyze data structures using object-oriented principles and techniques. Credit hours earned for this course cannot be used to fulfill degree requirements for the M.S. or Ph.D. programs in computer science. (Irreg.)</td>
<td></td>
</tr>
<tr>
<td>C S 4013</td>
<td>Artificial Intelligence</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with C S 5013) Prerequisite: CS 2413 or CS 5005, and CS 2813 or CS 4005 or MATH 2513. Study of the methods of search, knowledge representation, heuristics, and other aspects of automating the solution of problems requiring intelligence. No student may earn credit for both 4013 and 5013. (Sp)</td>
<td></td>
</tr>
<tr>
<td>C S 4023</td>
<td>Introduction to Intelligent Robotics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with C S 5023) Prerequisite: C S 2413, and C S 2813 or MATH 2513. History of intelligent robotics; functional models approach; reactive robots; ethology for robotics; architectures and methodologies; implementation; sensing; hybrid deliberative/reactive robotics; multi-robot systems; navigation; topological path planning; metric path planning; localization and mapping. No student may earn credit for both 4023 and 5023. (F)</td>
<td></td>
</tr>
<tr>
<td>C S 4033</td>
<td>Machine Learning</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with C S 5033) Prerequisites: C S 2413, and C S 2813 or MATH 2513, and MATH 4753 or ISE 3293 or MATH 4743, and MATH 3333, and MATH 3113 or MATH 3413. Topics include decision trees, relational learning, neural networks, Bayesian learning, reinforcement learning, multiple-instance learning, feature selection, learning appropriate representations, clustering, and kernel methods. No student may earn credit for both 4033 and 5033. (F)</td>
<td></td>
</tr>
<tr>
<td>C S 4053</td>
<td>Computer Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(Slashlisted with C S 5053) Prerequisite: C S 2413, and C S 2813 or MATH 2513, and MATH 3333. An introduction to computer graphics. Topics include coordinate systems, transformations, rendering in both two and three dimensions, and graphical programming. No student may earn credit for both 4053 and 5053. (F)</td>
<td></td>
</tr>
</tbody>
</table>
C S 4063 Human Computer Interaction 3 Credit Hours
(Slashlisted with CS 5063) Prerequisite: C S 2413, and C S 2813 or MATH 2513. An introduction to human-computer interaction and graphical user interfaces. Topics include principles of human-computer interaction, human perceptual and cognitive abilities, user interface analysis and design, window systems, and social implications of computing. Current user interface programming tools will be described and used. Oral presentations are required for some assignments. No student may earn credit for both 4063 and 5063. (Sp)

C S 4113 Operating Systems Theory 3 Credit Hours
(Slashlisted with 5113) Prerequisite: 3113 and Mathematics 4753 or Industrial Engineering 3293 or Mathematics 4743 or Engineering 3293. Continuation of study from 3113. Advanced topics and examples and simulation techniques used in performance evaluation. No student may earn credit for both 4113 and 5113. (Sp)

C S 4133 Data Networks 3 Credit Hours
(Slashlisted with 5133) Prerequisite: 3113 or permission of instructor. Comprehensive treatment of data networking principles including: layered protocol design and their functions, tools for performance analysis, multi-access communication, routing and flow control. No student may earn credit for both 4133 and 5133. (F)

C S 4173 Computer Security 3 Credit Hours
(Slashlisted with C S 5173) Prerequisite: CS 3113. An introduction to computer security. Topics include applied cryptography, access control, programming and software security, operating system security, network security protocols, and the legal and ethical aspects of security software. (F)

C S 4263 Software Engineering I 3 Credit Hours
Prerequisite: CS 3203 as prerequisite or concurrent enrollment; ENGL 3153 or BC 2813 or ENGR 2002; and Computer Science major or minor. Methods and tools for software specification, design, and documentation. Emphasis on architectural modularity, encapsulation of software objects, and software development processes such as design review, code inspection, and defect tracking. Students apply these ideas to design and document software products. Study of professional ethics, responsibility, legal issues. No student may obtain credit for CS 4263 and C S 5213. (F)

C S 4273 Software Engineering II 3 Credit Hours
Prerequisite: C S 3053 and C S 4263 and CS major or CS minor. Methods and tools for software development, testing, and delivery. Emphasis on data abstraction and reusable components. Students working in teams implement a significant software product, including design documents, user's guide, and process reports, using methods and processes studied in Software Engineering I. Students will practice oral and written communication skills. Study of professional social issues and responsibilities. No student may obtain credit for CS 4273 and C S 5213. (Sp)

C S 4281 Engineering Co-Op Program 1 Credit Hour
(Crosslisted with AME, CH E, CEES, ECE, EPHY, ISE and BME 4281) Prerequisite: Departmental permission and junior standing. May be repeated; maximum credit 6 hours. The Co-Op program provides students an opportunity to enhance their education via career exploration in related professional work experiences. Course assignments help students articulate their experiences by completing journals; mid-term paper; final paper and/or final presentation. Faculty receive an evaluation from the student's Co-Op supervisor who monitors performance. Faculty collaborate with the Co-Op supervisor to ensure student success. (F, Sp, Su)

C S G4323 Compiler Construction 3 Credit Hours
Prerequisite: 2413 and 3823. Introduction to the theory and implementation of programming language compilers and interpreters. Class projects require the design of medium scale software systems. (Sp)

C S 4410 Programming Competition 0 Credit Hours
Prerequisite: Permission of Instructor. Prepare students to participate in regional, national, and international computer programming competitions. Students will work in teams to solve challenging computer programming problems. (F, Sp)

C S G4413 Algorithm Analysis 3 Credit Hours
(Crosslisted with DSA 4413) Prerequisites: C S 2413 and C S 2813; or MATH 2513; or C S 5005. Design and analysis of algorithms and measurement of their complexity. This course introduces various algorithm design strategies: divide and conquer, greedy principle and dynamic programming to solve a variety of problems using algorithms of various types - deterministic and randomized, serial and parallel, centralized and decentralized, program based and circuit based. (F)

C S 4433 Computational Methods in Discrete Optimization 3 Credit Hours
(Slashlisted with C S 5433) Prerequisite: MATH 3333 and MATH 4413 or concurrent enrollment in 4413. Linear programming: simplex method for LP problems, degeneracy and anticycling strategies, duality theory and complementary slackness conditions, revised simplex method, sensitivity analysis and simplex method for general LP problems. Network optimization: the transshipment problem, network simplex method, shortest path algorithms, the maximum flow problem, and the primal dual method. No student may earn credit for both 4433 and 5433. (F)

C S 4473 Parallel, Distributed, and Network Programming 3 Credit Hours
(Slashlisted with C S 5473) Prerequisite: CS 3113 and CS 4413. Parallel and distributed architectures, algorithms, and programming paradigms. Topics include asynchronous/synchronous computation, GPU architectures, load balancing, memory hierarchies, message passing interface (MPI), SIMD/SPMD/MIMD, and multithreaded programming. Students will learn to program using a variety of current languages, systems, and tools. No student may earn credit for both 4473 and 5473. (Sp)

C S G4513 Database Management Systems 3 Credit Hours
(Crosslisted with DSA 4513) Prerequisites: C S 2413 and C S 2813; or MATH 2513; or C S 5005. The design and implementation of a DBMS including data models, query languages, entity-relationship diagrams, functional dependencies, normalization, storage structures, access methods, query processing, security and transaction management, and applications. The impact of databases on individuals, organizations, and society, and legal and professional responsibilities including security and privacy will be discussed. A commercial DBMS is used. Students practice written communication skills. (F)

C S G4613 Computer Architecture 3 Credit Hours
(Crosslisted with ECE 4613) Prerequisite: ECE 3223 or C S 2614 or C S 2613. Covers basic concepts of computer system design and communication between components, along with current and historical examples of computer architecture. (F, Sp)

C S 4743 Scientific Computing I 3 Credit Hours
(Slashlisted with C S 5743) Prerequisite: MATH 3333. Interaction between applications, architectures, and algorithms. Review of linear algebra, serial, pipelined vector processors, cluster of processors. Measures of proformance of parallel algorithms. Parallel algorithms for the solution of linear systems. No student may earn credit for both 4743 and 5743. (F)
C S 4823 Cryptography 3 Credit Hours
(Slashlisted with 5823) Prerequisite: 3823 and 4413. Elementary number theory, time complexity for doing arithmetic, finite fields, RSA, discrete logarithm and Diffie-Hellman, zero-knowledge protocols and oblivious transfer. Basic elliptic curve cryptosystems, elliptic curve factorization and primality proving. No student may earn credit for both 4823 and 5823. (Sp)

C S 4910 Senior Reading and Research 1-3 Credit Hours
1 to 3 hours. Prerequisite: senior standing, permission of instructor. May be repeated with change of subject matter; maximum credit six hours. Individually supervised reading and research in computing science for gifted seniors. (F, Sp, Su)

C S 4960 Directed Readings 1-4 Credit Hours
1 to 4 hours. Prerequisite: good standing in University; permission of instructor and dean. May be repeated; maximum credit four hours. Designed for upper-division students who need opportunity to study a specific problem in greater depth than formal course content permits. (Irreg.)

C S 4970 Undergraduate Seminar 1-3 Credit Hours
0 to 3 hours. May be repeated with change of subject matter; maximum credit three hours. A special type of seminar necessitated by the rapidly changing nature of modern data processing information science and computing sciences. (Irreg.)

C S 4973 Special Topics 3 Credit Hours
Prerequisite: 2413 and permission of instructor. May be repeated with change of subject matter; maximum credit nine hours. A special topics course necessitated by the rapidly changing nature of computer sciences. Topics offered under this number will be accepted as approved Computer Science electives for Computer Science majors. (Irreg.)

C S 4990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: Senior standing and permission of instructor. May be repeated; maximum credit nine hours but total credit applicable to any degree may be limited. Individual or group research and development projects involving original laboratory, analytical or theoretical investigations and syntheses. Specific objectives and work requirements are established by prior agreement of the instructor and student. Students should expect to spend at least 48 hours for each credit hour and to submit appropriate reports or papers. (F, Sp, Su).

C S 5005 Computing Structures 5 Credit Hours
(Crosslisted with DSA 5005) Prerequisite: CS 2334, MATH 1914 or MATH 1823 or with permission of graduate liaison. This course has three parts: discrete mathematics, object-oriented programming in C++, and data structures in C++. As part of the discrete mathematics students will be introduced to combinatorics, logic, relations, functions, computational complexity, automata, and graph theory. Students will be introduced to the fundamentals of object-oriented programming and learn to design, build, and analyze data structures using object-oriented principles and techniques. Credit hours earned for this course cannot be used to fulfill degree requirements for the B.S., M.S. or Ph.D. programs in computer science. (Irreg.)

C S 5013 Artificial Intelligence 3 Credit Hours
(Slashlisted with C S 4013) Prerequisite: graduate standing and C S 2413 or C S 5005, and C S 2813 or C S 4005 or MATH 2513. Study of the methods of search, knowledge representation, heuristics, and other aspects of automating the solution of problems requiring intelligence. No student may earn credit for both 4013 and 5013. (Sp)

C S 5023 Introduction to Intelligent Robotics 3 Credit Hours
(Slashlisted with C S 4023) Prerequisite: graduate standing and C S 2413, and C S 2813 or MATH 2513. History of intelligent robotics; functional models approach; reactive robots; ethology for robotics; architectures and methodologies; implementation; sensing; hybrid deliberative/reactive robotics; multi-robot systems; navigation; topological path planning; metric path planning; localization and mapping. No student may earn credit for both 4023 and 5023. (F)

C S 5033 Machine Learning 3 Credit Hours
(Slashlisted with C S 4033) Prerequisites: graduate standing and C S 2413; C S 2813 or MATH 2513; MATH 4743 or MATH 4743; MATH 3333; and MATH 3113 or MATH 3413. Topics include decision trees, relational learning, neural networks, Bayesian learning, reinforcement learning, multiple-instance learning, feature selection, learning appropriate representations, clustering, and kernel methods. No student may earn credit for both 4033 and 5033. (F)

C S 5043 Advanced Machine Learning 3 Credit Hours
Prerequisite: MATH 3333; MATH 4743 or MATH 4753 or ENGR 3293 or ISE 3293; and C S 4013 or C S 5033 or C S 5013 or C S 5593 or DSA 5103 or ISE 5103. Topics may include graphical models, kernel methods, and statistical relational learning. (Irreg.)

C S 5053 Computer Graphics 3 Credit Hours
(Slashlisted with C S 4053) Prerequisite: graduate standing and C S 2413, and C S 2813 or MATH 2513, and MATH 3333. An introduction to computer graphics. Topics include coordinate systems, transformations, rendering in both two and three dimensions, and graphical programming. No student may earn credit for both 4053 and 5053. (F)

C S 5063 Human Computer Interaction 3 Credit Hours
(Slashlisted with C S 4063) Prerequisite: Graduate standing and C S 2413, and C S 2813 or MATH 2513; or departmental permission. An introduction to human computer interaction and graphical user interfaces. Topics include principles of human computer interaction, human perceptual and cognitive abilities, user interface analysis and design, window systems, and social implications of computing. Current user interface programming tools will be described and used. Oral presentations are required for some assignments. No student may earn credit for both 4063 and 5063. (Sp)

C S 5073 Artificial Neural Networks Evolution 3 Credit Hours
Prerequisite: CS 2413 and CS 2813, or CS 5005, and MATH 3333. Overview of computational intelligence and artificial evolution, artificial neural networks and artificial evolution, introduction to artificial life and neuro-evolution, and evolutionary robotics. (F)

C S 5083 Knowledge Discovery and Data Mining 3 Credit Hours
Prerequisite: graduate standing, C S 4033 or C S 5033 or permission of instructor. An application oriented course that gives students the tools to develop and apply appropriate data mining and knowledge discovery techniques to real world problems. (Irreg.)

C S 5093 Visual Analytics 3 Credit Hours
Prerequisite: permission of instructor. Exploration and analysis of complex information through visual interactive computational tools and techniques. Topics include analytic reasoning, sense-making, knowledge dissemination, data representation and transformation, visual abstraction, coordinated interaction, visual query languages, spatiotemporal visualization, and applications of visual analysis. (Sp)
C S 5113 Operating Systems Theory 3 Credit Hours
(Slashlisted with 4113) Prerequisite: 3113 or 4004, and Mathematics 4753 or Industrial Engineering 3293 or Mathematics 4743 or Engineering 3293. Continuation of study from 3113. Advanced topics and examples, and simulation techniques used in performance evaluation. No student may earn credit for both 4113 and 5113. (Sp)

C S 5133 Data Networks 3 Credit Hours
(Slashlisted with 4133) Prerequisite: 3113 or 5004 or permission of instructor. Comprehensive treatment of data networking principles including: layered protocol designs and their functions, tools for performance analysis, multi-access communication, routing and flow control. No student may earn credit for both 4133 and 5133. (F)

C S 5143 Network Design and Management 3 Credit Hours
Prerequisite: 4133 or 5133, or equivalent. Basic concepts in networks; modeling and evaluation techniques; network analysis: delay, loss and throughput, centralized network design; distributed network design, network reliability; applications to local area wireless, wide area, multi-service networking, etc.; network management: SNMP, OSI management, distributed network management and architectures. (Sp)

C S 5153 Network Security 3 Credit Hours
Prerequisite: 4133 or 5133. Topics in network security including the inter-network security model, introduction to cryptography, public key encryption and hash functions, network security practice, and system security. (Sp)

C S 5173 Computer Security 3 Credit Hours
(Slashlisted with C S 4173) Prerequisite: CS 3113. An introduction to computer security. Topics include applied cryptography, access control, programming and software security, operating system security, network security protocols, and the legal and ethical aspects of security software. (F)

C S 5213 Software Engineering Processes 3 Credit Hours
Prerequisite: graduate standing, C S 3113 or C S 3823 or C S 5005. No student may obtain credit for C S 4263 or C S 4273 and CS 5213. Effective processes for software requirements specification, planning, design, documentation, development, review, defect tracking, testing, product delivery, and product evaluation. Emphasis on resource tracking and software quality. Students work in teams to develop, deliver, and evaluate software products. (Sp)

C S 5293 Text Analytics 3 Credit Hours
Prerequisite: C S 2413 or C S 5005; CS 2813 or MATH 2513; and MATH 4743 or MATH 4753 or ISE 3293 or ISE 5013. The course covers the design and implementation of algorithms to extract useful knowledge from text to support decision making, including methods to obtain data sets, understanding data formats, detecting duplicates, cleaning data sets, tagging, indexing, search, evaluating algorithms, classification, clustering, topic modeling, and entity resolution. (Sp)

C S 5413 Computational Complexity 3 Credit Hours
Prerequisite: 4413 and 3823 or 5813. Computational complexity theory dealing with various models of computation and a detailed analysis of P and NP hard problems. (Sp)

C S 5433 Computational Methods in Discrete Optimization 3 Credit Hours
(Slashlisted with C S 4433) Prerequisite: mathematics 3333 and 4413 or concurrent enrollment in 4413. Linear programming: simplex method for LP problems, degeneracy and anticycling strategies, duality theory and complementary slackness conditions, revised simplex method, sensitivity analysis and simplex method for general LP problems. Network optimization: the transshipment problem, network simplex method, shortest path algorithms, the maximum flow problem, and the primal dual method. No student may earn credit for both 4433 and 5433. (F)

C S 5443 Advanced Discrete Optimization and Networks 3 Credit Hours
Prerequisite: 4413. Review of basic algorithm techniques: DFS, BFS, shortest paths, min-cost spanning tree, etc.; maximum flow problem; labeling and preflow-push algorithms; maximum flow in unit capacity networks and complexity analysis; min cost-flow problems: duality theory, network simplex, primal-dual and relaxation methods; matching: bipartite matching, weighted matching and optimum assignment problems; connectivity: biconnectivity and K-connectivity algorithms; heuristics and approximation algorithms; applications: network design, network reliability and QoS routing etc. (Sp)

C S 5463 Advanced Computer Architecture 3 Credit Hours
(Crosslisted with ECE 5463) Prerequisite: C S 4613. The design of modern programmable computer systems with emphases on exploiting parallelism at all levels, designing within constraints, including energy consumption, and the impact of architecture on software design. Covers state of the art computer architecture, case studies and trends. (Sp)

C S 5473 Introduction to Parallel Programming 3 Credit Hours
(Slashlisted with C S 4473). Prerequisites: C S 4413, C S 3113. Parallel and distributed architectures, algorithms, and programming paradigms. Topics include asynchronous/synchronous computation, GPU architectures, load balancing, memory hierarchies, message passing interface (MPI), SIMD/SPMD/MIMD, and multithreaded programming. Students will learn to program using a variety of current languages, systems, and tools. No student may earn credit for both 4473 and 5473. (Sp)

C S 5483 Network Science 3 Credit Hours
Prerequisite: C S 4413 or DSA 4413 or permission of instructor. Topics to be covered include fundamental algorithms for network analysis, investigating properties of networks, learning community detection methods, understanding network inference methods, understanding dynamics of networks, percolation, resilience, spreading phenomenon, social influence, and cascades. A variety of application contexts will be used, including physical, informational, biological, cognitive, and social systems. (F)

C S 5513 Advanced Database Management 3 Credit Hours
Prerequisite: 4513. An advanced course dealing with both current database applied research subjects and theoretical aspects of relational databases. Selected topics such as distributed databases, object-oriented databases, real-time databases, and multimedia databases will be discussed. (Sp)

C S 5593 Data Mining 3 Credit Hours
Prerequisite: graduate standing and permission from the instructor or department. Covers the process, concepts and techniques in data mining, including advanced techniques that deal with Big Data. It provides students with the necessary background to conduct data mining tasks for real world problems. The topics covered include understanding and preprocessing data, classification, association analysis, cluster analysis, anomaly detection, and Big Data mining. (F)
C S 5613 Computer Networks and Distributed Processing 3 Credit Hours
Prerequisite: 4613. Provides a comprehensive treatment of the analysis and design of computer networks. Data communication techniques and distributed processing in a network architecture will be examined. (Sp)

C S 5743 Scientific Computing I 3 Credit Hours
(Slashlisted with C S 4743) Prerequisite: graduate standing and MATH 3333 and AME 3723 or MATH 4073 or ENGR 3723 or C S 3723. Interaction between applications, architectures, and algorithms. Review of linear algebra, serial, pipelined vector processors, cluster of processors. Measures of performance of parallel algorithms. Parallel algorithms for the solution of linear systems. No student may earn credit for both 4743 and 5743. (F)

C S 5753 Scientific Computing II 3 Credit Hours
Prerequisite: 5743. Special research topics in scientific computing. Possible topics include optimization algorithms, time series modeling, Kalman filtering techniques, and multivariate statistical techniques. (Sp)

C S 5813 Formal Languages 3 Credit Hours
Prerequisite: 3823. Theory of formal languages. Mathematical modeling of natural or artificial objects, events, and phenomena. Topics include systems for linear/nonlinear objects, their language-theoretical properties, and the related machine theory. (F)

C S 5823 Cryptography 3 Credit Hours
(Slashlisted with 4823) Prerequisite: 3823 and 4413. Elementary number theory, time complexity for doing arithmetic, finite fields, RSA, discrete logarithm and Diffie-Hellman, zero-knowledge protocols and oblivious transfer. Basic elliptic curve cryptosystems, elliptic curve factorization and primality proving. No student may earn credit for both 4823 and 5823. (Sp)

C S 5960 Directed Readings 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing and permission of department. May be repeated; maximum credit twelve hours. Directed readings and/or literature reviews under the direction of a faculty member. (F; Sp, Su)

C S 5970 Graduate Seminar 1-3 Credit Hours
Prerequisite: permission of instructor. May be repeated with change of subject matter; maximum credit six hours. Selected topics of current research interest not covered by regularly scheduled coursework. (F; Sp, Su)

C S 5980 Research for Master's Thesis 2-9 Credit Hours
Variable enrollment, two to nine hours; maximum credit applicable toward degree, six hours. (F, Sp, Su)

C S 5990 Independent Studies 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing, permission of instructor. May be repeated with change of topic; maximum graduate credit nine hours. Supervised individual reading and research in computer science for graduate students. (F, Sp, Su)

C S 6960 Directed Readings 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing or permission of instructor. May be repeated; maximum credit six hours. Directed readings and/or literature review under the direction of a faculty member. (Irreg.)

C S 6970 Special Topics/Seminar 1-3 Credit Hours
1 to 3 hours. Prerequisite: graduate standing or permission of instructor. May be repeated; maximum credit 12 hours. Special topics or seminar course for content not currently offered in regularly scheduled courses. May include library and/or research and field projects. (Irreg.)

C S 6973 Advanced Topics in Computer Science 3 Credit Hours
Prerequisite: graduate standing. May be repeated with change of subject matter. Selected topics of current faculty research interest at the Ph.D. level not covered by regularly scheduled coursework.

C S 6980 Research for Doctoral Dissertation 2-16 Credit Hours
2 to 16 hours. (F, Sp, Su)

C S 6990 Independent Study 1-3 Credit Hours
1 to 3 hours. Prerequisite: Graduate standing and permission of instructor. May be repeated; maximum credit nine hours. Contracted independent study for a topic not currently offered in regularly scheduled courses. Independent study may include library and/or laboratory research and field projects. (Irreg.)
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Year</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruenwald Gia Loi L</td>
<td>1991: Samuel Roberts Noble Presidential Professor, 1998; Professor of Computer Science, 2002; David W. Franke Professor of Computer Science, 2006; Data Science and Analytics</td>
<td>PhD, Southern Methodist Univ, 1990; MS, Univ of Houston, 1983; BS, Univ of Saigon, 1978</td>
<td></td>
</tr>
<tr>
<td>Hougen Dean</td>
<td>2001: Associate Professor of Computer Science, 2007; Associate Professor Data Science and Analytics</td>
<td>PhD, Univ of Minnesota, 1998; BS, Univ of Minnesota, 1988</td>
<td></td>
</tr>
<tr>
<td>Jabrzemski Rafal</td>
<td>1995: Assistant Professor of Computer Science, 2017</td>
<td>PhD, Univ of Oklahoma, 2014; MS, Univ of Oklahoma, 2000; MS, Univ of Oklahoma, 1996; BS, Warsaw Univ of Tech, 1994</td>
<td></td>
</tr>
<tr>
<td>Lakshmivarad Sivaramakris</td>
<td>1979: Professor of Computer Science, 1992; CIMMS Fellow, 1994; George Lynn Cross Research Professor of Computer Science, 1995; Professor Data Science and Analytics</td>
<td>PhD, Indian Inst of Science, 1973; ME, Indian Inst of Science, 1969; BE, Indian Inst of Science, 1967; BSc, MDT Hindu College</td>
<td></td>
</tr>
<tr>
<td>McGovern Amy</td>
<td>2005: Adjunct Assistant Professor of Meteorology, 2006; Professor of Computer Science, 2018; CIMMS Fellow, 2015</td>
<td>PhD, Massachusetts Amherst, 2002; MS, Massachusetts Amherst, 1998; BS, Carnegie Mellon, 1996</td>
<td></td>
</tr>
<tr>
<td>Pan Chongle</td>
<td>2018: Associate Professor of Computer Science, 2018; Associate Professor of Microbiology and Plant Biology, 2018</td>
<td>PhD, Univ of Tennessee</td>
<td></td>
</tr>
<tr>
<td>Radhakrishna Bridhar</td>
<td>1990: Director and Professor of Computer Science, 2002; Co-Director Data Science and Analytics</td>
<td>PhD, Louisiana State Univ, 1990; MS, Louisiana State Univ, 1987; MLS, Louisiana State Univ, 1986; BS, Univ of South Alabama, 1985; BSc, Univ of Madras, 1983</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Year</th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trytten Deborah</td>
<td>1992: Associate Professor of Computer Science, 1998; Adjunct Associate Professor of Women's and Gender Studies, 2013; President's Associates Presidential Professor, 2015</td>
<td>PhD, Michigan State Univ, 1992; MS, Michigan State Univ, 1988; MS, Michigan State Univ, 1984; BS, Albion College, 1982</td>
<td></td>
</tr>
<tr>
<td>Weaver Christopher E</td>
<td>2008: Associate Professor of Computer Science, 2014</td>
<td>PhD, Univ of Wisconsin, 2006; MS, Univ of Wisconsin, 1997; BS, Michigan State Univ, 1991</td>
<td></td>
</tr>
<tr>
<td>Pan Christopher</td>
<td>2008: Adjunct Assistant Professor of Computer Science, 2007; Associate Professor Data Science and Analytics</td>
<td>PhD, Univ of Wisconsin, 2006; MS, Univ of Wisconsin, 1997; BS, Michigan State Univ, 1991</td>
<td></td>
</tr>
</tbody>
</table>

8 School of Computer Science